A New Retina Camera for Premature and Early Infants

Mike Jones - Retired optical designer and Fellow, Lockheed Martin Corp. and Raytheon Corp. Dr. Michael Abrams MD - Pediatric Ophthalmology of Western Massachusetts, LLC Dr. Paul Rychwalski MD - Children's Nebraska Specialty Pediatric Clinic, Omaha NE Dr. Steven Archer MD - Pediatric Ophthalmology | Kellogg Eye Center, Ann Arbor MI Dr. Shruti Sinha MD - Fellow, Pediatric Ophthalmology, Children's Nebraska and UNMC, Omaha NE

Reasons for Development - Retinopathy of Prematurity (ROP):

There is an <u>urgent</u> global need for an inexpensive, field-portable, hand-held pediatric retinal camera to:

- Enable <u>non-physicians</u> to detect treatable ROP vascular abnormalities in infants that have survived 'extreme' prematurity, using validated diagnostic software
- Allow for 'field-expedient' medical treatment that can normalize blood flow to the retina and minimize the chances of permanent blindness

ROP: Retinopathy of Prematurity

Retinopathy of prematurity (ROP) is a leading cause of blindness in infants. ROP is a disease of the retina affecting prematurely-born, low birthweight infants who have received intensive neonatal care, and oxygen therapy. **Oxygen 'toxicity'** can cause the growth of abnormal retinal capillaries in the far periphery. These abnormal capillaries are heralded by Plus disease (defined as dilation and tortuosity of the posterior central vessels). They are fragile, leaky and can scar the retina, potentially leading to retinal detachment. The longer ROP goes untreated, the greater the risk of permanent vision loss in the affected eye. Retinopathy of prematurity is an emergency condition.

Vessel Tortuosity:

Page 2 of 17

Pediatric Camera Requirements and Goals

- 1. Develop a new retina camera designed specifically for detecting ROP in infants and premature babies
- 2. Design for infant eye globe diameters on the order of 16-20mm, much smaller than adult eyes
- 3. Have a field of view at the pediatric retina of a $\pm 30^{\circ}$ cone, centered on the fovea
- 4. Image over a spectral range of 565-600nm
- 5. Provide usable contrast, resolution of retinal vessels of < 50 µm/pixel, GOAL < 20 µm/pixel
- 6. Manual focusing for different eye globe diameters, near/far sightedness in infant eyes
- 7. Telecentric image perpendicular, uniform imaging over entire sensor
- 8. Lens distortion map and compensate in software to give rectilinear analysis imagery
- 9. Unit to be readily field-portable, hand-held, laptop-powered
- 10. Utilize resolution, color discrimination and AI-based image processing to detect vessel abnormalities
- 11. Achieve per-unit costs of 10-15% that of existing portable retina cameras
- 12. Design camera, computer and software system to facilitate rapid, reliable medical staff training

On-Retina Pediatric Camera Resolution Needed

www.nature.com/scientificreports

Contact-free trans-pars-planar illumination enables snapshot fundus camera for nonmydriatic wide field photography Benguan Wang, Devrim Toslak, Minhaj Nur Alam, R. V. Paul Chan & Xincheng Yao, June 8, 2018

Initial requirement:

- 50µm/pixel is standard criterion
- Only puts 4-5 pixels on vessels
- Below Johnson recognition criteria

Improved resolution goal:

- 25µm/pixel = 8 pixels on vessels
- Meets Johnson recognition criteria
- 20µm/pixel = improved recognition on smaller vessels

Multiple Camera Lens Options Explored - MTF Comparisons

3-element lens is the most economical, but performance needs improving

Page 5 of 17

Rev2 3-Element Design with Camera and Cell

Blackfly-s-board-level camera Model: BFS-GE-50S5C-BD2 (to scale)

Rev2 3-Element Lens with 16mm to 20mm Eyes

Rev2 3-Element Lens with 16mm to 20mm Eyes

- Telecentricity gives better image uniformity, less scale change with focus
- Optimized for 20mm eye, may try to optimize for 18mm instead

Rev2 3-Element Lens: Modulation Transfer Function for 16mm to 20mm Eyes

Object height = -0.05mm Pixel Size = 0.00345mm

Rev2 3-Element Lens: Ensquared Energy for 16mm to 20mm Eyes

Design Goals:

- Cluster ensquared energy curves together (uniform illumination over FOV)
- Get all curves at about the same range (uniform imagery vs. eye size)

Rev2 3-Element F-Theta Lens Distortion Mapping

https://www.flir.com/products/blackfly-s-board-level/?model=BFS-GE-50S5C-BD2&vertical=machine+vision&segment=iis

FAST SHIPPING

Tight-space embedding

TELEDYNE FLIR

8 Ë 🕀 🗸

SOLUTIONS PRODUCTS DISCOVER SUPPORT NEWS ABOUT

Blackfly S Board Level - Model: BFS-GE-50S5C-BD2: 5 MP, 24 FPS, Sony IMX264, Color Change Selection » \$878.00

Blackfly S Board Level

Model: BFS-GE-5055C-BD2: 5 MP, 24 FPS, Sony IMX264, Color Go to Product Support »

The FLIR Blackfly S Board Level variants are high performance, machine vision, area scan cameras designed for embedding into tight spaces. Unlike many board level cameras, it boasts a rich feature set applied to the latest CMOS sensors; the same feature set as the cased version. It is ready for integration with proven compatibility with popular SBCs and SOMs. The Blackfly S board level models enable OEMs to develop smaller, lighter, and lower cost solutions with embedded system connectivity and rich features.

The Blackfly S currently has a lead time of four weeks or less. Get the cameras you need – when you need them.

PRODUCT VARIATIONS:

BFS-GE-50S5C-BD2: 5 MP, 24 FPS, Sony IMX264, Color

\$878.00

Available for purchase on credit terms. Learn More

-

REQUEST INFO

REVISIONS			
REV.	DESCRIPTION	DATE	DONE BY
0	INITIAL RELEASE	04.MAY.18	DANIEL
1	ADDED BFS-U3-32S4M/C-BD2, BFS-U3-31S4M/C-BD2 AND BFS-U3- 88S6M/C-BD2 SPECIFICATIONS	27.APR.20	DAVID
2	ADDED SENSOR DIMS FOR MODELS 50S5, 88S6, 122S6, 63S4,16S2	14.DEC.20	DAVID

Page 13 of 17

Retinal Illumination Techniques

www.nature.com/scientificreports

Contact-free trans-pars-planar illumination enables snapshot fundus camera for nonmydriatic wide field photography Benquan Wang, Devrim Toslak, Minhaj Nur Alam, R. V. Paul Chan & Xincheng Yao, June 8, 2018

Progress as of Nov. 15, 2023

- Multiple optical design candidates developed that give needed resolution, contrast
- All employ bi-aspheric optical plastic elements as well as spherical optical glass elements
- Fresnel Technologies (Fort Worth TX) will manufacture the plastic bi-aspherics
- Plentiful suppliers for optical glass elements, Ohara
- Optical tolerancing underway
- Thorlabs narrowband LED-based illumination concepts in work
- Camera and programming/AI software person identified
 - Software is the antichrist of any development program!
 - Work to begin soon on camera / laptop interface and operability
- Lens/barrel will be a separate unit to be installed in the housing
- Mechanical designer needed to design housing for lens barrel, illumination, camera <u>Issues:</u>
- Need a dedicated mechanical engineer!

QUESTIONS?

POC:

Dr. Michael Abrams <u>mikebobby33@gmail.com</u> 508.654.1207